nillanet

Contents:

  • nillanet module
nillanet
  • documentation
  • View page source

documentation

Contents:

  • nillanet module
    • NN
      • NN.W
      • NN.batch()
      • NN.predict()
      • NN.summary()
      • NN.train()
    • Activations
      • Activations.linear()
      • Activations.linear_derivative()
      • Activations.relu()
      • Activations.relu_derivative()
      • Activations.sigmoid()
      • Activations.sigmoid_derivative()
      • Activations.softmax()
      • Activations.softmax_derivative()
      • Activations.tanh()
      • Activations.tanh_derivative()
    • Loss
      • Loss.binary_crossentropy()
      • Loss.binary_crossentropy_derivative()
      • Loss.mae()
      • Loss.mae_derivative()
      • Loss.mse()
      • Loss.mse_derivative()
    • IO
      • IO.load()
      • IO.save()
    • Distributions
      • Distributions.arithmetic_distribution()
      • Distributions.linear_distribution()
      • Distributions.logical_distribution()
      • Distributions.sort()
      • Distributions.summation()
    • Initializer
      • Initializer.__init__()
      • Initializer.he()
      • Initializer.normal()
      • Initializer.uniform()
      • Initializer.xavier()
    • Scheduler
      • Scheduler.__init__()
        • Scheduler.sigma
        • Scheduler.steps
      • Scheduler.constant()
      • Scheduler.cosine()
      • Scheduler.inverse()
      • Scheduler.linear()
      • Scheduler.step()
Next

© Copyright 2025, James Smith.

Built with Sphinx using a theme provided by Read the Docs.